
Package: gm (via r-universe)
October 14, 2024

Type Package

Title Create Music with Ease

Version 2.0.0

Author Renfei Mao

Maintainer Renfei Mao <renfeimao@gmail.com>

Description Provides a simple and intuitive high-level language for
music representation. Generates and embeds music scores and
audio files in 'RStudio', 'R Markdown' documents, and R
'Jupyter Notebooks'. Internally, uses 'MusicXML'
<https://github.com/w3c/musicxml> to represent music, and
'MuseScore' <https://musescore.org/> to convert 'MusicXML'.

License MIT + file LICENSE

URL https://github.com/flujoo/gm, https://flujoo.github.io/gm/

Encoding UTF-8

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, rstudioapi, shiny, testthat, tibble

Imports base64enc, erify, htmltools, utils

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

SystemRequirements MuseScore - https://musescore.org/

Repository https://flujoo.r-universe.dev

RemoteUrl https://github.com/flujoo/gm

RemoteRef HEAD

RemoteSha 69d639be86b0cef80d815a73a605ad7f9f5e0ce2

Contents
+.Music . 2
Accidental . 3

1

https://github.com/w3c/musicxml
https://musescore.org/
https://github.com/flujoo/gm
https://flujoo.github.io/gm/

2 +.Music

Articulation . 4
Breath . 6
Clef . 7
Dynamic . 8
export . 10
Fermata . 11
Grace . 12
Hairpin . 13
Instrument . 14
Key . 19
Line . 20
Lyric . 22
Meter . 23
Mordent . 24
Music . 25
Notehead . 26
Pedal . 27
Schleifer . 28
show . 29
Slur . 30
Stem . 31
Tempo . 32
Tie . 33
Tremolo . 34
Trill . 35
Turn . 36
Velocity . 37

Index 39

+.Music Add Component to Music Object

Description

Add a component to a Music object.

Usage

S3 method for class 'Music'
music + object

Arguments

music A Music object.
object An object of class Line, Meter, Key, Tempo, Clef, Instrument, Pedal, Slur,

Hairpin, Notehead, Accidental, Velocity, Dynamic, Grace, Stem, Lyric,
Tie, Articulation, Fermata, Breath, Trill, Turn, Mordent, Schleifer or
Tremolo.

Accidental 3

Value

A list of class Music.

See Also

Music() for initialization of a Music object.

Examples

Initialize a `Music` object
music <- Music()

Add a `Line`
music <- music + Line("C4", 1)
music

Add a `Meter`
music <- music + Meter(4, 4)
music

Generate the music score
if (interactive()) {

show(music)
}

Accidental Create Accidental Object

Description

Create an Accidental object to represent an accidental symbol.

Usage

Accidental(name, i, j = NULL, to = NULL, bracket = NULL)

Arguments

name A single character, which represents the name of the accidental. "flat" and
"sharp" are two common examples. For a complete list of accidentals, please
refer to the MusicXML specification. Unfortunately, not all accidentals are sup-
ported in MuseScore.

i A single positive integer, which represents the position of the accidental in a
musical line.

j Optional. A single positive integer, which represents the position of the acci-
dental in a chord.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the accidental.

https://w3c.github.io/musicxml/musicxml-reference/data-types/accidental-value/

4 Articulation

bracket Optional. A single logical, which indicates if the accidental is enclosed in brack-
ets.

Value

A list of class Accidental.

See Also

+.Music() for adding an Accidental to a Music object.

Examples

Create an `Accidental`
accidental <- Accidental("natural", 2, bracket = TRUE)
accidental

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "C4")) + accidental
music

Generate the music score
if (interactive()) {

show(music)
}

Articulation Create Articulation Object

Description

Create an Articulation object to represent an articulation mark.

Usage

Articulation(name, i, to = NULL)

Arguments

name A single character, which represents the name or symbol of the articulation. For
example, to create a staccato dot, name can be "staccato" or ".", which looks
like a staccato. See the Details section for supported articulations.

i A single positive integer, which represents the position of the articulation in a
musical line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the articulation.

Articulation 5

Details

Supported articulation names and symbols:

• "accent" or ">"

• "staccato" or "."

• "staccatissimo" or "’"

• "tenuto" or "-"

• "tenuto-staccato", "detached-legato" or "-."

• "marcato", "strong-accent" or "^"

• "scoop"

• "plop"

• "doit"

• "fall" or "falloff"

• "stress" or ","

• "unstress" or "u"

• "soft accent", "soft-accent" or "<>"

The names are from the MusicXML specification and MuseScore.

Value

A list of class Articulation.

See Also

+.Music() for adding an Articulation to a Music object.

Examples

Create a staccato
staccato <- Articulation(".", 1)
staccato

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4")) + staccato
music

Generate the music score
if (interactive()) {

show(music)
}

https://w3c.github.io/musicxml/musicxml-reference/elements/articulations/

6 Breath

Breath Create Breath Object

Description

Create a Breath object to represent a breath mark.

Usage

Breath(i, to = NULL, symbol = NULL)

Arguments

i A single positive integer, which represents the position of the breath mark in a
musical line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the breath mark.

symbol Optional. A single character which can be "comma", "tick", "upbow", and
"salzedo". It represents the symbol used for the breath mark. The default
symbol is "comma". See the MusicXML specification.

Value

A list of class Breath.

See Also

+.Music() for adding a breath mark to a Music object.

Examples

Create a breath mark
breath <- Breath(1)
breath

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4")) + breath
music

Generate the music score
if (interactive()) {

show(music)
}

https://w3c.github.io/musicxml/musicxml-reference/data-types/breath-mark-value/

Clef 7

Clef Create Clef Object

Description

Create a Clef object to represent a clef.

Usage

Clef(sign, line = NULL, octave = NULL, to = NULL, bar = NULL, offset = NULL)

Arguments

sign A single character, which can be "G", "F" or "C". Case insensitive.

line Optional. A single integer, which depends on sign:

• 1 or 2, if sign is "G";
• an integer between 3 and 5, if sign is "F";
• an integer between 1 and 5, if sign is "C".

octave Optional. A single integer, which can be -1 or 1. octave can be specified only
when

• sign is "G" and line is 2, or
• sign is "F" and line is 4.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the clef.

bar Optional. A positive integer, which indicates the number of the measure where
to add the clef. By default, the clef will be added at the first measure.

offset Optional. A non-negative number, which indicates the clef’s position in a mea-
sure. The default value is 0.

Details

See Wikipedia for more details.

Value

A list of class Clef.

See Also

+.Music() for adding a Clef to a Music object.

https://en.wikipedia.org/wiki/Clef

8 Dynamic

Examples

Create a bass clef
clef <- Clef("F")
clef

Add the clef to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C3", "D3")) + clef
music

Generate the music score
if (interactive()) {

show(music)
}

Dynamic Create Dynamic Object

Description

Create a Dynamic object to represent a dynamic marking.

Usage

Dynamic(marking, i, to = NULL, velocity = NULL, above = NULL)

Arguments

marking A single character, which represents the dynamic symbol on the score. If marking
is on the list in the Details section, and velocity is not specified, the corre-
sponding velocity on the list will be used. Otherwise, velocity must be speci-
fied, or the Dynamic will have no sound effect.

i A single positive integer, which represents the position of the Dynamic object in
a musical line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the Dynamic.

velocity Optional. A single integer between 0 and 127, which indicates the loudness of
the Dynamic.

above Optional. A single logical, which indicates whether the dynamic symbol should
appear above or below the staff.

Details

Common used dynamic markings and their velocities in MuseScore:

• pppppp: 1

• ppppp: 5

Dynamic 9

• pppp: 10

• ppp: 16

• pp: 33

• p: 49

• mp: 64

• mf: 80

• f: 96

• ff: 112

• fff: 126

• ffff: 127

• fffff: 127

• ffffff: 127

• fp: 96

• pf: 49

• sf: 112

• sfz: 112

• sff: 126

• sffz: 126

• sfp: 112

• sfpp: 112

• rfz: 112

• rf: 112

• fz: 112

• m: 96

• r: 112

• s: 112

• z: 80

• n: 49

Value

A list of class Dynamic.

See Also

+.Music() for adding an Dynamic to a Music object.

10 export

Examples

Create a `Dynamic`
f <- Dynamic("f", 1)
f

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4")) + f
music

Generate the music score
if (interactive()) {

show(music)
}

export Export Music Object

Description

Export a Music object to a file format such as PNG or MP3.

Usage

export(x, ...)

S3 method for class 'Music'
export(x, path, musescore = NULL, ...)

Arguments

x A Music object.

... Optional arguments to export() methods. Should be ignored by the user.

path A single character, which specifies the output file path. For example, "my/music/x.mp3".
See the Details section for supported file extensions.

musescore Optional. A character vector, which represents the command line options passed
to MuseScore. See MuseScore command line usage for details.

Details

Supported file extensions:

1. flac

2. metajson

3. mid

4. midi

5. mlog

https://musescore.org/en/handbook/4/command-line-usage

Fermata 11

6. mp3
7. mpos
8. mscx
9. mscz

10. musicxml
11. mxl
12. ogg
13. pdf
14. png
15. spos
16. svg
17. wav
18. xml

Value

An invisible NULL. A file is generated in the specified path.

Examples

if (interactive()) {
music <- Music() + Meter(4, 4) + Line("C4")
export(music, tempfile(fileext = ".mp3"), "-r 200 -b 520")

}

Fermata Create Fermata Object

Description

Create a Fermata object to represent a fermata symbol.

Usage

Fermata(i, to = NULL, shape = NULL, above = NULL)

Arguments

i A single positive integer, which represents the position of the fermata in a mu-
sical line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the fermata.

shape Optional. A single character, which indicates the shape of the fermata. The
default value is "normal". See the Details section.

above Optional. A single logical, which indicates whether the fermata symbol should
appear above or below the staff.

12 Grace

Details

Supported fermata shapes:

• "normal"

• "short" or "angled"

• "long" or "square"

• "very short" or "double-angled"

• "very long" or "double-square"

• "long (Henze)" or "double-dot"

• "short (Henze)" or "half-curve"

• "curlew"

The shapes are from the MusicXML specification and MuseScore.

Value

A list of class Fermata.

See Also

+.Music() for adding a Fermata to a Music object.

Examples

Create a fermata
fermata <- Fermata(1)
fermata

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4")) + fermata
music

Generate the music score
if (interactive()) {

show(music)
}

Grace Create Grace Object

Description

Create a Grace object. The Grace object can be added to an existing note or chord. It will turn the
note or chord to a grace note or chord.

https://w3c.github.io/musicxml/musicxml-reference/data-types/fermata-shape/

Hairpin 13

Usage

Grace(i, to = NULL, slash = NULL)

Arguments

i A single positive integer, which represents the position of the Grace object in a
musical line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the Grace object.

slash Optional. A single logical, which indicates if there is a slash symbol on the
grace note or chord. The default value is TRUE.

Details

A Grace object can not be added to a rest, tuplet, or note or chord that has a dotted duration. There
must be a note or chord after the note or chord where the Grace object is added.

Value

A list of class Grace.

See Also

+.Music() for adding a Grace object to a Music object.

Examples

Create a `Grace`
grace <- Grace(1)
grace

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4"), c(0.5, 1)) + grace
music

Generate the music score
if (interactive()) {

show(music)
}

Hairpin Create Hairpin Object

Description

Create a Hairpin object to represent a crescendo or diminuendo symbol.

14 Instrument

Usage

Hairpin(symbol, i, j, to = NULL, above = NULL)

Arguments

symbol A single character, which can be "<" or ">". They represent crescendo and
diminuendo respectively.

i, j A single positive integer. They indicate the start and end position of the Hairpin
object in a musical line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the Hairpin object.

above Optional. A single logical, which indicates whether the Hairpin object should
appear above or below the staff.

Value

A list of class Hairpin.

See Also

+.Music() for adding a Hairpin to a Music object.

Examples

Create a crescendo
crescendo <- Hairpin("<", 1, 3)
crescendo

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4", "E4")) + crescendo
music

Generate the music score
if (interactive()) {

show(music)
}

Instrument Create Instrument Object

Description

Create an Instrument object to represent an instrument.

Usage

Instrument(instrument, to = NULL, volume = NULL, pan = NULL)

Instrument 15

Arguments

instrument A single integer between 1 and 128, which indicates the program number of the
instrument. See the Details section for all instruments.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the instrument.

volume Optional. A single integer between 0 and 100, which represents the volume of
the instrument. The default value is 80. Please note that volume and pan only
work in MuseScore 3.

pan Optional. A single integer between -90 and 90, which represents the panning of
the instrument. The default value is 0.

Details

Supported instruments:

1. Acoustic Grand Piano

2. Bright Acoustic Piano

3. Electric Grand Piano

4. Honky-Tonk Piano

5. Electric Piano 1

6. Electric Piano 2

7. Harpsichord

8. Clavinet

9. Celesta

10. Glockenspiel

11. Music Box

12. Vibraphone

13. Marimba

14. Xylophone

15. Tubular Bells

16. Dulcimer

17. Drawbar Organ

18. Percussive Organ

19. Rock Organ

20. Church Organ

21. Reed Organ

22. Accordion

23. Harmonica

24. Tango Accordion

25. Acoustic Guitar (Nylon)

https://en.wikipedia.org/wiki/General_MIDI#Program_change_events

16 Instrument

26. Acoustic Guitar (Steel)

27. Electric Guitar (Jazz)

28. Electric Guitar (Clean)

29. Electric Guitar (Muted)

30. Overdriven Guitar

31. Distortion Guitar

32. Guitar Harmonics

33. Acoustic Bass

34. Electric Bass (Finger)

35. Electric Bass (Pick)

36. Fretless Bass

37. Slap Bass 1

38. Slap Bass 2

39. Synth Bass 1

40. Synth Bass 2

41. Violin

42. Viola

43. Cello

44. Contrabass

45. Tremolo Strings

46. Pizzicato Strings

47. Orchestral Harp

48. Timpani

49. String Ensemble 1

50. String Ensemble 2

51. Synth Strings 1

52. Synth Strings 2

53. Choir Aahs

54. Voice Oohs

55. Synth Voice

56. Orchestra Hit

57. Trumpet

58. Trombone

59. Tuba

60. Muted Trumpet

61. French Horn

62. Brass Section

Instrument 17

63. Synth Brass 1

64. Synth Brass 2

65. Soprano Sax

66. Alto Sax

67. Tenor Sax

68. Baritone Sax

69. Oboe

70. English Horn

71. Bassoon

72. Clarinet

73. Piccolo

74. Flute

75. Recorder

76. Pan Flute

77. Blown Bottle

78. Shakuhachi

79. Whistle

80. Ocarina

81. Lead 1 (Square)

82. Lead 2 (Sawtooth)

83. Lead 3 (Calliope)

84. Lead 4 (Chiff)

85. Lead 5 (Charang)

86. Lead 6 (Voice)

87. Lead 7 (Fifths)

88. Lead 8 (Bass + Lead)

89. Pad 1 (New Age)

90. Pad 2 (Warm)

91. Pad 3 (Polysynth)

92. Pad 4 (Choir)

93. Pad 5 (Bowed)

94. Pad 6 (Metallic)

95. Pad 7 (Halo)

96. Pad 8 (Sweep)

97. FX 1 (Rain)

98. FX 2 (Soundtrack)

99. FX 3 (Crystal)

18 Instrument

100. FX 4 (Atmosphere)

101. FX 5 (Brightness)

102. FX 6 (Goblins)

103. FX 7 (Echoes)

104. FX 8 (Sci-Fi)

105. Sitar

106. Banjo

107. Shamisen

108. Koto

109. Kalimba

110. Bag Pipe

111. Fiddle

112. Shanai

113. Tinkle Bell

114. Agogo

115. Steel Drums

116. Woodblock

117. Taiko Drum

118. Melodic Tom

119. Synth Drum

120. Reverse Cymbal

121. Guitar Fret Noise

122. Breath Noise

123. Seashore

124. Bird Tweet

125. Telephone Ring

126. Helicopter

127. Applause

128. Gunshot

Value

A list of class Instrument.

See Also

+.Music() for adding an instrument to a Music object.

Key 19

Examples

Create a flute
flute <- Instrument(74, pan = -90)
flute

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C5", "D5", "E5", "F5")) + flute
music

Generate the music score
if (interactive()) {

show(music)
}

Key Create Key Object

Description

Create a Key object to represent a key signature.

Usage

Key(key, bar = NULL, to = NULL, scope = NULL)

Arguments

key A single integer between -7 and 7, which indicates the number of flat or sharp
symbols in the key signature.

bar Optional. A positive integer, which indicates the number of the measure where
to add the key signature. By default, the key signature will be added at the first
measure.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the key signature. By default, the key signature will
be added to the whole music rather than some specific musical line.

scope Optional. A single character of "part" or "staff", which indicates whether to
add the key signature to a whole part or only some staff of the part. Only when
to is specified, can this argument be specified. The default value is "part".

Value

A list of class Key.

See Also

+.Music() for adding a key signature to a Music object.

20 Line

Examples

Create a G major
g <- Key(1, to = 1)
g

Add it only to some part of a `Music`
music <-

Music() +
Meter(4, 4) +
Line(c("C4", "D4")) +
Line("G3") +
g

music

Generate the music score
if (interactive()) {

show(music)
}

Line Create Line Object

Description

Create a Line object to represent a musical line. In gm, the musical line is the basic unit of music.
It appears in different forms, such as voices, staffs, and parts in music scores.

Usage

Line(
pitches = NULL,
durations = NULL,
tie = NULL,
name = NULL,
as = NULL,
to = NULL,
after = NULL,
bar = NULL,
offset = NULL

)

Arguments

pitches A list or vector which represents the pitches of a musical line. The items of
pitches can be

• single characters like "C4", which represent pitch notations,
• single integers between 12 and 127, which represent MIDI note numbers,

Line 21

• single NAs, which represent rests, and
• vectors of pitch notations and MIDI note numbers, which represent chords.

If not provided, the default value is NA. If pitches and durations are not of the
same length, the shorter one will be recycled. pitches and durations can not
both be empty.

durations A list or vector which represents the durations of a musical line. The items of
durations can be

• single numbers, which represent note lengths, and
• single characters like "quarter", which represent duration notations.

If not provided, the default value is 1.

tie Deprecated. Was used to add ties to notes. Please use Tie() instead.

name Optional. A single character which represents the name of the musical line.
When adding components to a musical line, it can be referred to by its name.

as Optional. A single character which can be "part", "staff", "voice", and
"segment". It specifies how the musical line appears in the music score. The
default value is "part".

to Optional. A single character or integer, which represents the name or row num-
ber of a reference musical line to which to add the current musical line. By
default, the musical line will be added at the end of the score.

after Optional. A single logical which indicates whether to add the musical line after
or before the reference musical line. The default value is TRUE.

bar Optional. A positive integer, which indicates the number of the measure where
to add the musical line. By default, the musical line will be added at the first
measure.

offset Optional. A non-negative number, which indicates the position in a measure
where to add the musical line. The default value is 0.

Value

A list of class Line.

See Also

+.Music() for adding a musical line to a Music object.

Examples

Create a musical line
line <- Line(c("C4", "D4", "E4"))
line

Add it to a music
music <- Music() + Meter(4, 4) + line
music

Generate the music score

22 Lyric

if (interactive()) {
show(music)

}

Lyric Create Lyric Object

Description

Create a Lyric object to represent a unit of lyrics.

Usage

Lyric(text, i, to = NULL, verse = NULL)

Arguments

text A single character, which usually represents a word or syllable of the lyrics. See
the Details section for more complex usage.

i A single positive integer, which represents the position of the Lyric in a musical
line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the Lyric.

verse Optional. A positive integer which indicates the verse where to add the Lyric.
The default value is 1. See the MuseScore handbook .

Details

You can use "-" and "_" in argument text to create the following structures:

• Syllable: for example, with Lyric("mo-", 1) and Lyric("-ther", 3), the two syllables of
mother are added to the first and third notes, with a hyphen placed on the second note.

• Melisma: for example, with Lyric("love_", 1) and Lyric("_", 3), the word love is added
to the first note, followed by an underscore line which extends over the second and third notes.

• Elision: for example, with Lyric("my_love", 1), words my and love are both added to the
first note, connected by an elision slur.

Use "\\-" and "_" if you want to add hyphens and underscores literally.

Value

A list of class Lyric.

See Also

+.Music() for adding a Lyric to a Music object.

https://musescore.org/en/handbook/4/lyrics#overview
https://musescore.org/en/handbook/4/lyrics#enter-syllables
https://musescore.org/en/handbook/4/lyrics#enter-melisma
https://musescore.org/en/handbook/4/lyrics#elision-slur

Meter 23

Examples

Create two syllables
syllable_1 <- Lyric("He-", 1)
syllable_2 <- Lyric("-llo", 3)
syllable_1
syllable_2

Add them to a `Music`
music <-

Music() +
Meter(4, 4) +
Line(c("C4", "D4", "E4")) +
syllable_1 +
syllable_2

music

Generate the music score
if (interactive()) {

show(music)
}

Meter Create Meter Object

Description

Create a Meter object to represent a time signature.

Usage

Meter(
number,
unit,
bar = NULL,
actual_number = NULL,
actual_unit = NULL,
invisible = NULL

)

Arguments

number A positive integer to represent the upper numeral of the time signature, which
indicates how many beats each measure has.

unit A single integer which can be 1, 2, 4, 8, 16, 32 or 64. It represents the lower
numeral of the time signature, which indicates the duration of one single beat.

24 Mordent

bar Optional. A positive integer, which indicates the number of the measure where
to add the time signature. By default, the time signature will be added at the first
measure.

actual_number, actual_unit
Optional. They define the actual time signature rather than the one that appears
on the score. Usually used to create a pickup measure. By default, they are the
same as number and unit.

invisible Optional. A single logical, which indicates whether to show the time signature
on the score. Usually used to create a pickup measure. The default value is
FALSE.

Value

A list of class Meter.

See Also

+.Music() for adding a Meter to a Music object.

Examples

Create a 3/4 time signature
meter <- Meter(3, 4)

Add it to a `Music`
music <- Music() + Line(c("C4", "D4", "E4")) + meter
music

Generate the music score
if (interactive()) {

show(music)
}

Mordent Create Mordent Object

Description

Create a Mordent object to represent a mordent ornament.

Usage

Mordent(i, to = NULL, inverted = NULL, long = NULL, ornament = NULL)

Music 25

Arguments

i A single positive integer, which represents the position of the mordent in a mu-
sical line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the mordent.

inverted Optional. A single logical, which indicates whether the mordent is inverted or
not. The default value is FALSE. See MusicXML specification of mordent and
inverted mordent.

long Optional. A single logical, which indicates whether the mordent is long or not.
The default value is FALSE.

ornament Optional. A single character, which can be "left up", "left down", "right
up", or "right down". It indicates the direction of the mordent’s left or right
part.

Value

A list of class Mordent.

See Also

+.Music() for adding a Mordent to a Music object.

Examples

Create a mordent
mordent <- Mordent(1)
mordent

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4")) + mordent
music

Generate the music score
if (interactive()) {

show(music)
}

Music Initialize Music Object

Description

Initialize a Music object. Other components can be added to it.

Usage

Music()

https://w3c.github.io/musicxml/musicxml-reference/elements/mordent/
https://w3c.github.io/musicxml/musicxml-reference/elements/inverted-mordent/

26 Notehead

Value

A list of class Music.

See Also

+.Music() for adding components to a Music object.

Examples

Initialize a `Music`
Music()

Notehead Create Notehead Object

Description

Create a Notehead object to customize the appearance of a note’s head.

Usage

Notehead(
i,
j = NULL,
to = NULL,
shape = NULL,
color = NULL,
filled = NULL,
bracket = NULL

)

Arguments

i A single positive integer, which represents the position of the note in a musical
line.

j Optional. A single positive integer, which represents the position of the note in
a chord.

to Optional. A single character or a single positive integer, which indicates the
musical line where to apply the Notehead.

shape Optional. A single character which represents the shape of the note’s head. See
the MusicXML specification for all shapes. Unfortunately, not all shapes are
supported in MuseScore.

color Optional. A single character which represents the color of the note’s head. It
must be in the hexadecimal RGB or ARGB format.

filled Optional. A single logical, which indicates whether the note’s head is filled or
hollow.

bracket Optional. A single logical, which indicates whether the note’s head is enclosed
in brackets.

https://w3c.github.io/musicxml/musicxml-reference/data-types/notehead-value/

Pedal 27

Value

A list of class Notehead.

See Also

+.Music() for adding a Notehead to a Music object.

Examples

Create a `Notehead`
notehead <- Notehead(1, shape = "diamond", color = "#800080")
notehead

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4")) + notehead
music

Generate the music score
if (interactive()) {

show(music)
}

Pedal Create Pedal Object

Description

Create a Pedal object to represent piano sustain pedal marks.

Usage

Pedal(i, j, to = NULL)

Arguments

i, j A single positive integer. They indicate the start and end position of the Pedal
object in a musical line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the Pedal object.

Value

A list of class Pedal.

See Also

+.Music() for adding a Pedal to a Music object.

28 Schleifer

Examples

Create a `Pedal`
pedal <- Pedal(1, 3)
pedal

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4", "E4")) + pedal
music

Generate the music score
if (interactive()) {

show(music)
}

Schleifer Create Schleifer Object

Description

Create a Schleifer object to represent a slide ornament. See the MusicXML specification.

Usage

Schleifer(i, to = NULL)

Arguments

i A single positive integer, which represents the position of the Schleifer object
in a musical line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the Schleifer object.

Value

A list of class Schleifer.

See Also

+.Music() for adding a Schleifer to a Music object.

Examples

Create a `Schleifer`
schleifer <- Schleifer(1)
schleifer

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4")) + schleifer

https://w3c.github.io/musicxml/musicxml-reference/elements/schleifer/

show 29

music

Generate the music score
if (interactive()) {

show(music)
}

show Show Music Object

Description

Display a Music object as a music score or audio file.

Usage

show(x, to, musescore)

S3 method for class 'Music'
show(x, to = NULL, musescore = NULL)

Arguments

x A Music object.

to Optional. A character vector, which can be "score", "audio", or both. It
specifies the output format. By default, both are displayed. You can change the
default behavior by setting the gm.show_to option with options().

musescore Optional. A character vector, which represents the command line options passed
to MuseScore. See MuseScore command line usage for details.

Details

This function works in

• RStudio

• R Markdown files

• Jupyter Notebooks

• Shiny applications

• R.app GUI

Value

An invisible NULL. A music score or audio file will be displayed.

https://musescore.org/en/handbook/4/command-line-usage

30 Slur

Examples

if (interactive()) {
music <- Music() + Meter(4, 4) + Line("C4")
show(music, musescore = "-r 800 -T 5")

}

Slur Create Slur Object

Description

Create a Slur object to represent a slur.

Usage

Slur(i, j, to = NULL, to_j = NULL, above = NULL)

Arguments

i, j A single positive integer. They indicate the start and end positions of the slur.

to, to_j Optional. A single character or a single positive integer, which indicates the
musical line where to add the slur. Specify to_j if the start and end positions
are in different musical lines.

above Optional. A single logical, which indicates whether the slur should appear above
or below the staff. By default, the position is decided by MuseScore.

Value

A list of class Slur.

See Also

+.Music() for adding a slur to a Music object.

Examples

Create a slur
slur <- Slur(1, 3)
slur

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4", "E4")) + slur
music

Generate the music score
if (interactive()) {

show(music)
}

Stem 31

Stem Create Stem Object

Description

Create a Stem object to modify the stem of some note.

Usage

Stem(direction, i, to = NULL)

Arguments

direction A single character, which can be "down", "up", "double", and "none". See the
MusicXML specification.

i A single positive integer, which represents the position of the stem in a musical
line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to modify the stem.

Value

A list of class Stem.

See Also

+.Music() for adding a Stem to a Music object.

Examples

Create a `Stem`
stem <- Stem("none", 1)
stem

Add a `Stem` to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4")) + stem
music

Generate the music score
if (interactive()) {

show(music)
}

https://w3c.github.io/musicxml/musicxml-reference/data-types/stem-value/
https://w3c.github.io/musicxml/musicxml-reference/data-types/stem-value/

32 Tempo

Tempo Create Tempo Object

Description

Create a Tempo object to represent a tempo marking.

Usage

Tempo(tempo, unit = NULL, bar = NULL, offset = NULL, marking = NULL)

Arguments

tempo A positive number, which indicates the number of quarter notes per minute.

unit Deprecated. Was used to specify the beat unit. Please use marking instead.

bar Optional. A positive integer, which indicates the number of the measure where
to add the tempo. By default, it will be added at the first measure.

offset Optional. A non-negative number, which indicates the tempo’s position in a
measure. The default value is 0.

marking Optional. A single character, which represents the marking that appears on the
score. See the Details section.

Details

The parameter tempo is used to specify the actual playback speed, while marking to represent the
marking that appears on the score.

Some examples:

• Tempo(50): the playback speed is 50 quarter notes per minute. A marking of "quarter = 50"
will be added to the score.

• Tempo(50, marking = "Adagio"): the playback speed is 50 quarter notes per minute, while
the marking on the score is "Adagio".

• Tempo(50, marking = "Adagio half. = 20"): the playback speed is 50 quarter notes per
minute, while the marking on the score is "Adagio half. = 20".

• Tempo(50, marking = "Adagio (quarter = 45-80)"): you can add a speed range and paren-
theses to the marking.

• Tempo(50, marking = "quarter. = quarter"): you can also indicate metric modulations
with marking.

Value

A list of class Tempo.

See Also

+.Music() for adding a tempo to a Music object.

Tie 33

Examples

Create a tempo
tempo <- Tempo(50, marking = "Adagio (half = 25)")
tempo

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4", "E4", "F4")) + tempo
music

Generate the music score
if (interactive()) {

show(music)
}

Tie Create Tie Object

Description

Create a Tie to tie some notes together.

Usage

Tie(i, j = NULL, to = NULL, above = NULL)

Arguments

i A single positive integer, which represents the start position of the tie in a musi-
cal line.

j Optional. A single positive integer, which represents the start position of the tie
in a chord. If not provided, all notes in the chords that have equivalent pitches
are tied.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the tie.

above Optional. A single logical, which indicates if the tie is placed above the notes.
By default, the position is decided by MuseScore.

Value

A list of class Tie.

See Also

+.Music() for adding a tie to a Music object.

34 Tremolo

Examples

Create a tie
tie <- Tie(1)
tie

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "C4")) + tie
music

Generate the music score
if (interactive()) {

show(music)
}

Tremolo Create Tremolo Object

Description

Create a Tremolo object to represent a tremolo.

Usage

Tremolo(number, i, to = NULL, between = NULL)

Arguments

number A single integer which can be 1, 2, 3, and 4. It indicates the speed of the tremolo.

i A single positive integer, which represents the position of the tremolo in a mu-
sical line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the tremolo.

between Optional. A single logical which indicates if the tremolo is between notes.

Value

A list of class Tremolo.

See Also

+.Music() for adding a tremolo to a Music object.

Trill 35

Examples

Create a tremolo
tremolo <- Tremolo(3, 1, between = TRUE)
tremolo

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4", "E4", "F4")) + tremolo
music

Generate the music score
if (interactive()) {

show(music)
}

Trill Create Trill Object

Description

Create a Trill object to represent a trill ornament.

Usage

Trill(i, j = NULL, to = NULL)

Arguments

i A single positive integer, which represents the position of the trill in a musical
line.

j Optional. A single positive integer, which indicates the end position of the trill
line in a musical line. If not provided, the trill will appear as a tr symbol above
only the trilled note. Otherwise, it will appear as a tr~~~ symbol above the notes
between the start and end positions.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the trill.

Value

A list of class Trill.

See Also

+.Music() for adding a trill to a Music object.

36 Turn

Examples

Create a trill
trill <- Trill(1, 3)
trill

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4", "E4", "F4")) + trill
music

Generate the music score
if (interactive()) {

show(music)
}

Turn Create Turn Object

Description

Create a Turn object to represent a turn ornament.

Usage

Turn(i, to = NULL, inverted = NULL)

Arguments

i A single positive integer, which represents the position of the turn in a musical
line.

to Optional. A single character or a single positive integer, which indicates the
musical line where to add the turn.

inverted Optional. A single logical, which indicates if it is an inverted turn. The default
value is FALSE. See MusicXML specification of turn and inverted turn.

Value

A list of class Turn.

See Also

+.Music() for adding a turn to a Music object.

https://w3c.github.io/musicxml/musicxml-reference/elements/turn/
https://w3c.github.io/musicxml/musicxml-reference/elements/inverted-turn/

Velocity 37

Examples

Create a turn
turn <- Turn(1, inverted = TRUE)
turn

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4")) + turn
music

Generate the music score
if (interactive()) {

show(music)
}

Velocity Create Velocity Object

Description

Create a Velocity object to set some notes’ velocities.

Usage

Velocity(velocity, to = NULL, i = NULL, j = NULL)

Arguments

velocity A single integer between 0 and 127, which indicates the velocity to apply.

to Optional. A single character or a single positive integer, which indicates the
musical line where to apply the velocity. If not provided, the velocity will be
applied to all notes.

i Optional. A single positive integer, which represents the position of the velocity
in a musical line.

j Optional. A single positive integer, which represents the position of the velocity
in a chord.

Value

A list of class Velocity.

See Also

• +.Music() for adding a Velocity to a Music object

• Dynamic() for adding dynamic markings

38 Velocity

Examples

Create a `Velocity`
velocity <- Velocity(10)
velocity

Add it to a `Music`
music <- Music() + Meter(4, 4) + Line(c("C4", "D4")) + velocity
music

Generate the music score
if (interactive()) {

show(music)
}

Index

+.Music, 2
+.Music(), 4–7, 9, 12–14, 18, 19, 21, 22,

24–28, 30–37

Accidental, 3
Articulation, 4

Breath, 6

Clef, 7

Dynamic, 8
Dynamic(), 37

export, 10

Fermata, 11

Grace, 12

Hairpin, 13

Instrument, 14

Key, 19

Line, 20
Lyric, 22

Meter, 23
Mordent, 24
Music, 25
Music(), 3

Notehead, 26

Pedal, 27

Schleifer, 28
show, 29
Slur, 30
Stem, 31

Tempo, 32
Tie, 33
Tie(), 21
Tremolo, 34
Trill, 35
Turn, 36

Velocity, 37

39

	+.Music
	Accidental
	Articulation
	Breath
	Clef
	Dynamic
	export
	Fermata
	Grace
	Hairpin
	Instrument
	Key
	Line
	Lyric
	Meter
	Mordent
	Music
	Notehead
	Pedal
	Schleifer
	show
	Slur
	Stem
	Tempo
	Tie
	Tremolo
	Trill
	Turn
	Velocity
	Index

